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FOREWORD 

This is the final report de- conducted for the National Aero- 
[sics and-S@ES?iaministration, George C. Marshall Space Flight Center 

under Contract Number NAS 8-28607. This study was  a 'Parachute 
Dynamics and Stability Analysis" as applied to the Solid Rocket Booster 
recovery system of the Space Shuttle. This report covers the period from 
1 February 1973 through 1 February 1974. The Contract Technical Monitor 
is Mr. Gaines L. Watts 

The authors wish to express their gratitude to Mr.  M. Bazakos for his assis- 
tance with the computer simulation programs that were developed and to 
Dr. R. E. Rose, Program Manager, for his guidance and supervision. 
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PAMCHUTE DYNAMICS AND STABILITY ANALYSIS 

By: S. K. Ibrahim and R. A. Engdahl 

SUMMARY 

The nonlinear differential equations of motion for  a Zeneral parachute-riser- 
payload system are developed. The resulting math model is then applied for 
analyzing the descent dynamics and stability characteristics of both the 
drogue stabilization phase and the main descent phase of the Space Shuttle 
Solid Rocket Booster (SRB) recovery system. 

The formulation of the problem is characterized by a minimum number of 
simplifying assumptions and full application of state-of -the-art parachute 
technology. 
modeled a s  elastic elements, and the whole system may be subjected to 
specified wind and gust profiles in order to assess  their effects on the sta- 
bility of the recovery system. 

A numerical linearization technique is provided as an optional subroutine. 
It permits the linearization of the system's equations of motion at selected 
points of the descent trajectory and the calculation of the Eigenvalues 
describing the principal motions. Root locus plots may be obtained to study 
the variation in stability characteristics as a function of time. 
simulations with the nonlinear system of equations were run for a wide range 
of initial conditions both with and without the elastic suspension system 
effects and the wind and gust models. For selected runs, the linearization 
procedure w a s  applied at predetermined points, the Eigenvalues were cal- 
culated, and the stability characteristics were examined. It was determined 
that, for the range of anticipated initial conditions, the projected drogue 
configuration quickly stabilizes the SRB motions, the SRB/ Main  descent con- 
figuration is stable, and the motions of the system, with the specified wind 
and gust profiles, remain within acceptable limits a t  water impact. 

The parachute suspension lines and the parachute r i s e r s  can be 

. 
Computer 

INTH ODUCTION 

This is the final report of a one-year program of analytica.1 and computa- 
tional work. 
mathemp tical model for the descent dynamics of a parachute/vehicle system 
acd to use that model as the basis for a computer simulation, stability 
analysis, and parametric optimization of the Space Shuttle Solid Rocket 
Booster (SRB) recovery system. 

The program's primary objective was to formulato a realistic 
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The recoverable weight of the SRB is at least three times that of any pre- 
viously recovered payload. Full scale testing may not be feasible and large 
scale drop tests a r e  very costly; hence, the need for realistic simulation 
models to permit detailed studies of optimum system parameters and sta- 
bility characteristics and to minimize the number of drop tests. 

The math model described in this report is more general than previously 
published models. Among other things, it permits 6 degrees-of -freedom 
motion for both the parachtue and the vehicle, it includes elastic represen- 
tation for  the risers and suspension line, the effect of deterministic winds 
and gusts on the system’s performance and a more general representation 
of apparent mass effects. A separate computnr program, using the elastic 
element approach, permits the calculation of more realistic canopy profile 
shapes. 

1,IST OF SYMBOLS 

ALCM 

* ‘Ni 
c nq 

MI 

Ti 

C 

C 

CP 

*li 

F3i 
F2 

*i 

Length from confluence point to plane of s k i r t  

Direction cosines matrix element, body j, row i, column 
k (i, j, k = 1, 2, 3)  

Direction cosine scalar products, Parachute 

Direction cosine scalar products, SRl3 

Velocity vector of body i, i = 1, 2, 3 

Normal force coefficient, body i, i 12 1, 3 

Center of mass 

Moment Coefficient, body i ,  i = 1, 3 

Tangent force coefficient, body i, i = 1, 3 

Center of pressure 

Aerodynamic forces on body 1 in direction i(i=X, Y, Z) ,  lb 

Aerodynamic forces on body 3 in direction i(i=X, Y, Z), lb 

Riser force, lb 

Gravitational acceleration, !t /see 

Principal moments of inertia matrix, body i, slug f t  

2 

2 

2 



‘A 1 

KLS 

KR 
L 

L1 

L3 

L4 

LS 

L2’ LR 

L3T 

LCM 

i m 

mI 

m l A  

mC 

mL 

Mli 

M3 i 
N 

‘i 

Qi 

Ri 

RO 

Qi 

2 Principal apparent moments of inertia matrix, slug ft 
body 1 

Suspension line spring constant, lb/ft 

Riser spring constant, lb / f t  

Length 

Length from confluence point to parachute CP 

Length of riser 

Length from SRB attach point to  SRB CM 

Length of SRB 

ength from SRB CM to SRB CP, positive towards engine 

Length from confluence point to parachute CM 

Length of suspension lines 

Mass of body i 

Included mass of the parachute 

Apparent mass  tensor of parachute 

Canopy mass 

Suspension line mass 

Moments about axis i of body 1 i = X Y, 2 

Moments about axis i of body 3 i = X, Y, Z 

Number of suspension lines, Normal force 

Angular Velocity about X-axis, body i 

Angular Velocity along Y-axis, body i 

Angular Velocity about Z-axis, body i 

Skirt Radius 

Dynamic pressure at  CP  of body i, 1blf-i 2 
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2 Nominal area, body i, ft 

Linear velocity in X-direction, body i, f t /sec 

Linear velocity i r  Y-direction, body i, f t /sec 

Linear velocity in Z-direction, body i, f t / s ec  

Right-handed orthogonal axes of body fix :d reference 
frame i 

'oi 

Ui 

'i 

wi 

'i, 'i 

XEi, YEi, ZEi Earth fixed coordinates for body i, ft 

Angle of attack, body i i CY 

$iJ  e i J  Q)i Euler angles, body i 
d 

W Angular velocity vector 
d( ) Dot notation for  time derivative, -at ( *  1 

C 

P 

Damping coefficient,lb sec / f t  

A i r  density, slug/ft 3 

SUBSCRIPTS 

1 Parachute 

2 Riser 

3 Payload (SRB) 

o Nominal conditions 
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RECOVERY SYSTEM ANALYSIS 

THE APPROACH TO THE PROBLEM 

The technical approach is structured to  assess  the descent dynarrA.cs and 
stabiiity characteristics of a general parachute-riser payload co-xbination. 
The advantage to  a gene .1 case study is the ability to  study a wider range 
of possible configurations with a minimum number of simplifying assump- 
tions. Three primary tasks describe the approach takep in the analysis of 
the problem. 

The parachute riser-payload configuration was  arranged 
and then said to be nominal according to specifications pro- 
vided by the contracting agency and particular requirements 
of the descent conditions, A mathematick1 model incorpor- 
ating elastic risers and suspension lines, three bodies each 
with six degrees of freedom, and a non steady air mass  was  
developed. 
form the nonlinear simulation. 

A complete s0ftwa.c package was written to  per- 

Using the nonlinear software package, simulations of the 
nonlinear dynamics of the parachute-riser-payload were 
made for a variety of initial conditions both with and without 
the influence of the nonsteady air mass and the elasticity of 
the suspension lines and riser, 
to equilibrium trajectories and to t: e occurrence of limit 
cycle responses. 

Particular attention w a s  paid 

Using numerical techniques, linearization of the state equa- 
tions of motion was  accomplished, 
system to disturbances was  then assessed using the Root 
Locus technique. Using the same linearization technique. 
stability analysis as a function of certain parameters can 
be assessed. 

The stability of the 

While  the state of the art of parachute recovery of l c a e  paylcads extrap- 
olates to a successful recovery of the space shuttle solid rocket booster 
(SRB), the magnitude of the SRB recovery problem is at least three times 
the size of any previous successful recovery. The large suspended load 
(approximately 150,000 lb), the size of the parachutes (3-130 f t  Conical 
Ribbon) and the overall length of the system (about 400 f t )  demand highly 
sophistocated math modeling and Simulation if  accurate stability conclusions 
a r e  to  be rightfully drawn. The tL :mica1 objective of ,'his study then is to, 
as accurately as possible, analyzz the descent dynamics, predict stability 
characteristics, an.?. reduce the cost of the recovery by providing a better 
starting point for fu l l  scale testing and evaluation. 

5 



GENERAL RECOVERY SEQUENCE 

A schematic representation of the space shuttle SRB recovery is shown as 
Figure 1. The  recovery process begins with the disengagement of the space 
shuttle main body and the SRB by explosive charges. The SRB then continues 
on a ballistic trajectory modified by its own aerodynamics through the 
apogee of nearly 200,000 ft, descending to approximately 20,000 f t ,  at which 
point the drogue parachute (48 f t  Conical Ribbon) is deployed. Stabilization 
through the next 6000 f t  of the descent provides sufficient conditions for the 
deployment in reefed stages of a three-parachute cluster. The cluster of 
130-ft conical ribbon parachutes is fully deployed and fully inflated at a n  
altitude of approximately 6000 ft. A steady descent concludes with water 
impact. 

The analysis of the descent dynamics is made during the f inal  6000 ft ,  during 
which the motion of the system is effected by a potentially non-steady air 
mass perturbed by gusts. 
and ends a t  wa te r  impact. 

The analysis begins at full inflation of the cluster 

The recovery system components, the drogue parachute, the main para- 
chutes, and the SRB w e r e  chosen to meet the requirements established by 
the contracting agency. 
ribbon parachute (Ref. 1). A cluster of 3-130 ft, 20-deg conical ribbon 
parachutes provides the required 80 fps descent rate during the final 4000 f t  
(Ref. 2). The dimensions and mass of the SRB have continually changed 
during this study. The dimensions and mass used, however, are repre- 
sentative and provide an adequate model of the final configuration. The SRB/ 
Drogue combination is shown in Figure 2, and the SRB/Main is shown in 
Figure 3. 

The drogue was chosen as a 48-ft, 20-ieg conical 

SIMPLIFYING ASSUMPTIONS 

Several simplifying assumptions are employed which reduce the computa- 
tional magnitude without compromising the general nature of the problem. 
Others are made to improve the math models to the extent t h t  ,the state of 
the a r t  allows. 

0 The Parachute is assumed to be axisymmetric and to  have 
a fixed-shape canopy with elastic suspension lines. 

0 The riser connecting the parachute and payload is elastic 
and transmits only axial forces to  the attach points on the 
SRB and parachute axes of symmetry. 

The SRB is a rigid, axisymmetric body. 0 
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Drogue 

= 48f t  DO 
Dl = O . 7 7 0 0 = 3 7 f t  

lS = 2.0 DO=96f t  

L1 = 103ft  

LCM = 102ft 

Lcp = 0.163 Do 
Ls - 96 ft 

SRB - 
= 11.8ft 

= 81 ft 

= 157 ft 

= 0 .0  ft 

O 3  

L3 

L4 

System 

‘2 
L = 231ft 

I = DO = 48 ft 

I L2 I 

+ 
I 

I 

Figure 2. SRB/Drogue Baseline Configuration 
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Main 

Do = 130ft 

= 292ft 

- 

L1 
Lcp = 0.16300 

k- = 290 ft 

D1 = 0 . 7 5 D O = 9 4 f t  

X B  

D3 = 11.8ft 

L3T = 145ft 

L3 = 75 ft 

Lq = 0 ft 

Syste,! 

L2 = 67ft 

CM 
CP 

T I 

Figure 3. SRBlMain Baseline Configuration 
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The aerodynamic centers of pressure are constrained to 
remain on the axes of symmetry of the SRB and the para- 
chute but do not necessarily coincide with the centers of 
mass  of those bodies. 

The energy modification of the air mass caused by the 
movement of the parachute through it is represented 
tensors of apparent mass and apparent moments si inertia 
and not considered for  the SRB motion. 

The separation distance between the SRB and the main para- 
chutes is large enough to neglect forebody wake effects. 

The non steady air mass is represented by a wind velocity 
field and a gust velocity field perturbation. 

A flat earth is used for  trajectory calculations. 

SYSTEM MODE LING 

The mathematical modeling of the primary subsystems, the parachute, the 
riser, and the solid rocket booster is described in this section as used in 
the development of an analytical nonlinear simulation programming system. 
Modeling of the elastic elements and the non steady a i r  mass  is also 
described. 

The equations of motion of the three body system are written relative to a 
tlat earth. The forces and moments on the parachute and SRB result from 
aerodynamics and gravity. 
equations of motion is discussed. 

The application of the aerodynamics into the 

Finai;,y, in this section the techniques used to  linearize the nonlinear motion 
and to perform a stability analysis are outlined. 

DEVELOPMENT OF A NONLINEAR DYNAMICAL MODEL OF 
THE PARACHUTE/RISER/PAYLOAD SYSTEM 

The parachute/riser /payload system is modeled a s  a three-body, six- 
degree-of-freedom-each problem. 
nected by the riser, the constrained system finally reduces to  a 15-degree- 
of-freedom problem. 

Since the parachute and SRB are con- 
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The differential equations of motion. -- The equations of motion are 
developed in general terms first with no elasticity and a steady air mass. 
The effects of the inclusion of the elastic suspension lines is then included. 
The basic math model is adapted from Reference 3. 

Reference frames : The reference frames and their initial orientation 
a r e  shown in Figure 4. 

Four right handed orthogonal reference frames are needed to specify the 
motions of the parachute (System 11, the riser (System 2) ,  and the payload 
(System 3). 

Earth fixed frame: Origin OE is fixed on an assumed flat earth 
directly below the initial position of the SRB Center of Mass .  
downward, XE is horizontal on the flat earth aligned in the vertical earth 
plane containing the initial SRB Center of M a s s  velocity vector, and YE is 
cross  range to the right. 

and payload (SRB), body-fixed reference frames a r e  at the respective 
centers of mass, O1 and 03. Zi axes a r e  aligned with the axes of symmetry 
with Z1 directed toward the parachute confluence point, Z2 directed from 
the parachute confluence point to the SRB attach point, and Z 3  directed 
toward the engine end of the SRB. Xi axes a r e  aligned initially parallel to 
the vertical earth plane containing the payload center of mass  initial 
velocity vector. 

Ze is direct- 

Body-fixed, moving frames 1, 2, and 3: The origins of the parachute 

Euler angles: The Euler angles di, Oi, 14 describe the orientation of 

about Zi followed by Oi about Yi and 
the body-fixed reference frames with respect to the earth fixed inertial 
frame, The ordered rotations are 
then di about Xi a s  illustrated in  Figure 5. 

The direction cosine matrix [BJ] transforms a vector in earth fixed refer- 
ence frame to the jth body fixed reference frame in the following manner: 

Conversely, by premultiplying 

11 



Coordinate systems 
1. Parachute 
2. Riser 
3. Payload 

Zi 

Flat earth O 3  

Figure 4.  Reference Frame Definition and Orientation for 
a 3 -Body Parachute Riser Payload System 
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Figure 5. Euler Angle Rotations 
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The direction cosine matrix [BJ] is such that i ts  transpose is the same as 
i ts  inverse; i. e.,  

‘ ~ ~ 1  = 

rBj]T = 1 ~ j 1 - 1  

Hence, Equation (1B) can also be written 

sin 8 .  cos $ . s i n  @ sin I$. s in  8 .  sin Jr 

j 
+ cos @ .  cos Jr 

sin $.  cos 8.  
J J j J J j J J 

- cos d .  sin +. 
J 3 J 

‘T‘ VE -+ = fBJ3 vj 

In terms of the Euler angles and the sequence $ , 8 ,  d,  (BJ] is as follows: 

cos 8 .  cos lll. I J  J 
cos 8 .  s i n  J r .  

J J j 
-sin 0 

Q. sin 8. cos $ cos @ .  sin 8 .  sin Jr cos a .  cos 8 
J 3 j J J j J j 

j 
- s i r  ’ cos J: 

j ‘j 
+sin $. sin Jt 

J 

Its elements are written Bik where i is the row number and k is the 
column number. 

The Euler angIe rates are given by 

j 
ij = !Q. sin a.  + R .  cos @.) sec 8 

J J J  J 

6 = Q j c m  8 - R. sin 6. 
j j J  3 

= P.  + ( Q .  sin @. + R .  ccs 9 . )  tan 8 
‘j J 3 J J  J j 

(3 )  

The indices j = 1, 2, 3 correspond to the parachute, riser, and payload, 
respectively. 

The dynamics of motion: 

The parachute: The equations of motion for  the parachute are divided 

force and moment equations. -- 

into force and moment equcltions about the center of mass. 

14 



The force equations are written 

- 
0 0 

0 mlAY 0 

0 0 mlAZ- 

1AX 

4 4 4 4  ' 2 T' F1 i- ml[B1] g + [B1] [B ] F2 = ml(C1 + w1 x C 1 )  

' 4  4 

+CrnlA3 (C1+ w 1  x C1) 

4 -e 

where F2 is the riser force, F2 - 
- [:j 

is  the parachute mass (canopy + suspension lines) ml 
and 

m l A  = 

is the apparenc mass tensor resulting from the air mass accelerations 
produced by the parachute motion. 

- 
F1 - 

4 - 
c1 - 

4 

g =  

4 

w =  1 
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Equation (4 ), when written in matrix form, becomes 
r 1 

Equation (4),  in scalar form, is  

1 
FIX + ml  B13g + BSl F2 = (ml + mlAX) ( U l  + W1 Q, - VI R1) 

1 Fly + m1 B23g + bS2 F2 = (m, + mlAy) (V1  + U1 R1 - W1 P1) (4C) 

1 21' are the elements of the third column of the matrix [B 3 [B 3 

10 



The aerodynamic forces a r e  given by 

4 

where w1 = k; 

V 
where p, = tan-' ( L ) e  

u1 

, the total angular velocity vector of body 1 and I;, is the 

The moment equations about the parachute bod? axes fixed at the Center of 
M a s s  may be written 

n1 = i i l + ; l X T ; l  

;, = [I] J, = 

IZZl : I  IXXl 0 

0 IYY1 
0 0 

p1 

Ql 

R1 

The apparent moments of inertia resulting from the air mass accelerations 
generated by the parachute rotational motions may be written assuming 
principal axes 

O 1  
0 

[IAJ = I O O I  
IYYAl 

lo 0 

1 7  



A combined moment of inertia matrix may be calculated, 
axis theorem, and is written 

using the parallel 

4 

IYY 1 [I41 = 0 

0 0 I 
Hence, the moment equation may be writterl 

0 

* 
IYY 1 

0 

0 

0 

* 
I Z Z l  

Pl 

Q1 1 .  R1 

0 0 .I?' IYYl 0 

IZZl 1 0 lo 

1 0 

0 

* 
IZZ*l 

0 

1 l-Q1 

In scalar form, Equation (5B) becomes 

4 

P l +  G Z 1  - IYYl Ql R 1  

M I Y  = I n 1  Ql + (IXX1 - IZZl R1  p1 

MIZ = IZZl R1 + (IYY1 - IXXl p1 Q1 

- 
- 'rnl 

* 4 

* * 

-R: 

0 

p1 

Q, ' 
-pl j 
0 

The moments acting about the CM location due to the external forces are 
in vector notation: 

4 1 2 T '  -4 -b -4 

M1 = F1 x L +  [[B 3 [B  3 F2? x Lc 
M 

(6A) 

18 



where : I  0 

0 

L1 - LCM 

4 

L =  

In matrix form 

I 

0 

0 

L -L 
‘M 

F2RSl 

F B  

F2BS3 

2 s2 

0 -F 1z Fly1 

FIZ 0 -FIX I 
0 ! 

J 
FIX 

0 

F2BS3 0 

1 LcM 

X 

0 

0 

L -L . 

0 

0 

In scalar form, Equation (6, becomes: 

MIX = ylY ( L  1 -L  CM ) - F2 BS2 LcM 

MIY = -F 1x ( L  1 -L C M ) +  F2 RS1 LCM 

M I Z  = 0 



There are no  external forces acting off the axis of symmetry, hence 
hlIZ = 0. 

The moment equations can be written using moment coefficients for the 
contribution to the total external moment due to aerodynamic forces as in 
Equbtion (74 ). 

The Payload (SRB) -- The equations of motion for the payload are written 
along the same lines as those for  the parachute, with the exception that the 
apparent mass and moment of inertia effects are not included. 

The force equations are written 

where 

Equation (71, in scalar form, becomes 

are the elements of the third column of the matrix 
operation [E3 1 [B 3 3 2 T  where [ .,i 
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The aerodynamic forces are given by 

q S sin p3 F3Y = ‘N3 3 03 

where 

-1 v3 
u3 

p3 = t an  (-1 

The moment eqmtions for the SSB are wr i t ten  

M3X = IXx3 p3 + (IZZ3 - IYY3) Q3 R3 

M3Y = IYY3 Q3 + (‘XX3 - IZZ3) R3 ‘3 (8A) 

M3Z = I223  R3 + (IYY3 - 1xx30 p3 Q3 

The moment; acting about the C M  location due to the external forces are 

M3X = -F3Y L4 - F2 BS5 L3 

M3Y = F3X L4 + F2 BS4 L3 

MQZ = 0 

where L3 is the length from the SRB’s  attach point t o  its center of mass 
and 4 is the length f-om the center of mass  to the center of pressure of 
the SRB-Lq is positive when measured from the center of mass  in the direc- 
tion of +Z3. 

The moment equations can be written using moment coefficients for  the 
contribution to the total external momerrt due to aerodynamic forces as in 
Equation (75) .  

The Kinematics of Motion: The Riser Constraint 

The r i se r ,  assumed for the time being to  be of fixed length, provides a 
convenient method of interconnecting the equations of motion of the parachute 
and the payload. Consider the linear velocities a t  each end of Ilic riser. 

2 1  



A t  the confluence poht of the parachute suspension lines : 

T 
m23 

c I;]= [::I w 1  + (9)  

A t  the attach point on the payload: 

Subtracting Equation (9 )  from Equation (101, the linear velocities in the 
riser coordinate systems are eliminated: 

i " 1  
'M 

'M 

. 
Differentiation of Equation ( 1 1 )  yields equations for Q,, P2 and W1: 

rn 

- p2 L2 Q2L21 0 

+ 

( 1 1 )  

22 



q + 

W ii 

T 
- tB1l 

I .  

3 

W. 
L .  

+ (12) 

The third scalar equation of Equation (12)  gives an expression fo7 W1 as 
follows : 

' 3  ' 3  ' 3  
+ B13 (U3 - Q3 L3) + B23 (V3 + Pg L3) + B33 W3 

- B13 ' 1  (U1 + Q  L ) - B23 ' 1  (VI - P L 
) - B& W1 'M 'M 

1 '  - Bi3 ( U l  + h  L ) - B23 (V, - P L )] 
'M 'M 

. .  . .  
Expressions for Bj3, Bi3, and Bi3 from Equations (2),  (3),and their deri- 
vatives a r e  as f o d w s :  

. .  
Bi3 = -Q. BJ + R .  BJ 

J 33 J 23 
. .  

= P. B i 3  - R .  Bi3  (14) 4 3  J J 
. .  
Bi3 = -P. Bj + Qj Bi3  J 23 

Substitution from Equation ( 14) into Equation ( 13) yields exprcssions for W 
free of derivatives of BJ 

Similarly, we can obtain equations for Q2 and P2 from the first and second 
scalar equations of Equation (12). 

. .  
ik '  
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The r i se r  force F2 can be obtained from the third equation of Equation 
(4C) in terms of 6 a s  given by Equation (13). 1 

The riser force, of course, is directed along the 2 axis of the riser refer- 
ence fran1 e. 

System State Differential Equations for tho Yon-Elastic, 
Steady A i r m a s s  Case 

Equations (3 )  to (81, (12), and (13) can be written in the following form: 

3 .  3 +BI3 ( L J 3  - h 3 3  L ) + (P3 B33 - R 3  B i3 )  iV3 + P3 L3) 
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*" 
'3 = - 1 {F3X + m3 B;3 g - F2 B-1 - Wg Q3 + Vg R 3  

m3 

$ .  = (Q. s i n d . +  R. cos d.1 sec 8 j = 1, 2,  3 
J J J J  J j D  

8 = Qj cos d - R .  sin d . ,  j = 1, 2, 3 
j J J  J 

d .  = P.  + (Q. sin d .  + R .  cos d . )  tan e j = 1, 2 ,  3 J J J J J  J j D  

2 5  



1 1 ’  - (P1 Bi2 - R1 B12) (V, - P L ) - B22 (VI - P L 
‘M ‘M 

) 

1 1 ’  - (Ql B12 - P 1 B 2 2  )W1 - B32 ( W l ) l l  

. .  
- (P1 B t l  - R1 Bi1) (V1 - P L ) - B i l  (V1 - P 

‘M 

R 2  = 0 (39) 

In the set of Equations (16)  through (39), there are no terms involving the 
riser linear velocity components U2, Vz, W2 or their derivatives, 

The velocity of the SRB Center of Mass relative to the earth can be deter- 
mined from Equations (19), (20), (21), the direction cosine matrix [B33 
given by Equation (21, and Equation (1C). 
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By integrating Equations (191, (20), and (21)  and applying Equation ( lC) ,  
the linear velocity components of the SRB Center of Mass in the Earth 
fixed reference frame will be: 

3 3 
xE3  = u3E11 + 'QB;1 W3B31 

ZE3 = U3BY3 + V3B23 3 + W3B33 3 

Elastic Models  

The entire parachute is made of elastic material and is subject to deforma- 
tion under load. The riser too elongates when loaded. 
additional dynamics caused by the continuous dynamic flexing of the para- 
chute - r i se r  system, two elastic models are employed. 

The f i rs t  is a canopy shape model which depends on the suspended load, 
the cano;-y pressure distribution, the inflation condition, and the construc- 
tion of the canopy (Ref. 4). 
gram but i ts  result is an input to the simulation program. 

To account for any 

Its use is independent of the simulation pro- 

The second is a damped. spring mass m d e l  of the suspension lines and 
r i se r .  The application of this model is dynamic in the simulation program. 

Promam CANO -- An elastic canopy shape analysis is done by Program 
CANO (Ref. 4). 

For a n  assumed pressure distribution and an initial gore geometry specifi- 
cation (which assumes the canopy to be made up of discrete horizontal and 
radial elementdand a specified suspension line length and riser load the 
program solves for the equilibrium shape and loads of the discrete mem- 
bers. 

The method assumes an elastic deformable frame (the canopy) under a 
specific load (the pressure distribution) to determine the loaded (equili- 
brium) shape. The pressure distribution is nondimensionalized by the 
length along the canopy surface. The load elongation curves are set for 
types of materials and a r e  generalized a s  percentage of breaking strength 
and unit strain. 
need be specified. 

Thus, only the type of materials and geometry of the gore 

For specific loading cmditions such a s  reefed, fully open. overinflation 
lines, etc., the program iterates across the canopy surface, adjusting the 
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breaking strength of each member to equal the calculated load. 
t u m  adjusts the weight and then the equilibrium shape of the canopy. 
the new breaking strengths of the members, a new equilibrium shape for 
the canopy and new loads for each element are calculated. 
compared to the most currently defined breaking strength, and when ail 
elements have breaking strengths within a range of zero to  five percent 
more than the calculated load, the parachute is said to be optimized. 

This in 
For 

The loads are 

Using the assumption that for a particular material type (e. g. , web, tape, 
o r  cord) the weight of a material is proportional to i ts  breaking strength, 
the optimized weight of ihe radial and horizontal members and the suspen- 
sion lines are calculated, and thus the weight of the total canopy is deter- 
mined. 
ing strength and type, which implies a load-strain characteristic and a 
parametric weight, materials are chosen that are the lightest available 
which meet the strength requirements for the calculated loads in individual 
elements. The "buildable" parachute weights are calculated and compared 
as non-optimum factors to the optimized parachute weights. 

From an input table of available materials characterized by break- 

The program CANO can be apkilied to consecutive steps iil the process of 
deployment. It can be used to calculate the optimum parachute to meet up 
to  2 1  loading conditions which are combinations of partial inflation, reefed 
s k i r t ,  overinflation lines, and fully open. Thus, an accurate estimate of 
canopy weight can be made for a particular set  of loading and inflation 
conditions. 

The canopy profile generated by CANO for a fully inflated 130 f t  conical 
ribbon parachute with a 200,000 lb suspended weight is shown in Figure 6. 

Elastic Suspension Lines and Risers -- The suspension lines and risers 
generally used in parachute construction are quite elastic. 
dynamics introduced by their elastic characteristics are to  be included in 
the general equations of metion describing the parachute/riser/ payload 
descent . 

The additional 

The geometry of the parachute and r i se r  is shown in Figure 7. 
elements a r e  the suspension lines (length Ls) and the riser (length L2), 
Elongation of the suspension lines results in a change in the suspension 
line angle and hence the suspension line moments of inertia, There is also 
a change in the location of the center of mass  of the parachute and a result- 
ing change in the total moments of inertia of the parachute. 

The elastic 

Two key assumptions are made: 

0 

a 

28 

The canopy is fixed in shape and thus the skirt  radius Ro 
is constant. 

The angle k tween  the parachute axis of symmetry and the riser 
is  always small. 
confluence point along the parachute axis of symmetry and thus 
the parachute remains axially symmetric. 
fluence point r tmains  on the axis of symmetry and the suspen- 
sion line cone remains right circular with variations in height 
only. 

The riser force then is transmitted to the 

That is, the con- 
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Figure 6.  Fully Inflated Conical Ribbon Canopy 
Shape a s  Calculated by Program 
C A N 0  (Ref. 4 )  

29 



I11 

30 

L2 

7 
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The elastic elements a r e  modeled as damped linearly elastic springs. The 
damping coefficient is taken as a representative value for  dacron material 
(Ref.  5). Thus, 

= 0.05 lb sec/ft  i43) 

The spring constants a r e  determined a s  functions of the uwtretched length, 
the elongation at break, the suspended load, and a safety factor of 3. 
for the riser, 

Thus, 

3M3g 
lb l f t  KR = 1.2LR 

0 

where M3g is the suspended weight 

LR is the unstretched riser length 
0 

1 . 2  represents 20% elongation at break 

and 3 is a safety factor 

For the  suspension lines the shspended load is the load carried by each 
line so that 

3M38 lb/ f t  KLS - - 1.2LS0W 

(44) 

(45) 

where Lso is the unstretched suspension line length and N is the number of 
suspension lines, 

W e  can now model the dynamic length of the elastic elements for the sus- 
pension lines 

for the riser 

(4 6 )  

(47 )  

t 

In Equation (46) LCM is used in place oT Ls. 
(53)  (yet to come) with respect to time validates this substitution provided 
that the suspension line angle is small and the included mass much greater 
than the canopy or suspension line mass. 

Differentiation of Equation 
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The rate of change of lengths of the center of 
a r e  calculated using the central difference in 
change in time. Thus, 

mass location and the riser 
average length divided by the 

- 
is the averaged riser length during the interval where for example 2)t-At-t 

t - At to t and d2 is the time derivative of L2 at time t 

L 

dt I t 

2 - “MI  

Parachute Center of Rlass Location -- The canopy is modeled as a semi- 
oblate spheroid whose height is 32. 570 of the nominal diameter, Do and 
whose radius is 3670 of the nominal diameter. 

The canopy volume is 

2 Vc = 7 TI (0 .325 Do) (0.36 Do)2. 

The included air mass is given by 

m1 = vc 0 

where 0 is the a i r  density. 

(49) 

(50) 
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The center of pressure and the center of mass of the canopy are both 
assumed to  be located r t  the centroid of the canopy volume. 

The suspension lines are mcdeled a s  thin rods kaving uniform mass dis- 
tribution as shown in Figure 8. 

Zigure 8. Suspc ' .. I . % + e  Geometry 

The suspension line angle is given by 

The centcr of mass  of all  the  suspension lines is 

cos y 
ALCM = -  LS 

2 2 (52) 

The cm ter of mass location for the entire canopy then is given by the fol- 
lowing re lation 

ALCM x m 

33  



Parachute moments of inertia: Canopy moments of inertia written about 
the point "o" in Figure 6 in the plane of the skirt  a r e  

2 2 = -M (0.36 Do) I Z Z  3 c 

= L M  [(O. 325 Do) 2 + (0.36 Do) 2 1 
IXX = IYY 3 c 

Suspension line momei.ts of inertia about the suspension linc zone center of 
mass location a re  

n 

2 sin y - 

12 I Z Z  - 

9 

- M&LSa 
'xx = IYY 12 

(55) 
2 cos y 

The apparent moments of inertia of the canopy written about the total para- 
chute center of mass location are according to Reference 6: 

5 IZZA = 0.063 p(Ro)  
1 

= 0.042 p (Ro) 5 + MIA (L  -L )2 (56) 
= IYY 'M A1 

'xx, 
1 

The total Parachute moments of inertia about the total parachute center of 
mass location then a r e  given by 

2 

M4Ls cos2y+ Mc (L - * -  * -  
M 

+ -f ((0. 3252 + 0. 362) D:] 

ALCMJP 12 %M IXXl - IYYl - 

+ M I A ( L 1  - L'cM )2 

2 2 * MdLS sin' y + Mc (0.36 Do) 
12 IZZl = 

+ 0.063 p (Ro)5 
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Additions to the nonlinear differential equations of motion. -- T k  in- 
c!rision of elasticity adds several terms to  the differential equations of 
motion. 

When writing the constraint equations which allow coupling of 
of the parachute and SRB, the velocity of the confluence point 
the center of mass location is amended to read 

the .motions 
relative to  

(58) 

The velocity of the end of the r i se r  at the payload attach point is rewritten 

+ (59) 

Thus, with the  addition of elasticity, the final constraint equation, corre- 
sponding to Equation (11) is: 

QZL2 u 3 7  -Q3L3 

[B2'r [:]I CB31T{ [j + [ pj} 
l T  - [ B  I + 

(60) 

35 



Differentiating the constraint equation above results in 

+ 

QZL2 

- P  L 2 2  

L2 

b 3 I T  

T d 
dt  - - [B'] 

t * 9 =  

t 

+ 

+ 

u 1  [; + 

-. 
-Q3L3 ;..I) 0 

- 

+ 

+ ) 
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From Equation (61) we can obtain expressions for W I D  PZD Q2. 

Equations (16) to (39) describe the nopelastic differential equations of 
motion. Equations for W P2, and Q2 [ ( l a ) ,  (37), and (38)1 are re- 
written here to incorpora 1 e the changes due to  the inclusion of elasticity. 

- ( Q ~ B : ~  - P ~ B ~ ~ )  1 (w, + i: 
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b, = --5-{Q2 1 (Q2B:2 - R2B22) 2 + P2(P2B:2 - R2B12) 2 
B22 

+ ( P ~ B ~ ~  3 - R ~ B ~ ~ )  3 (v3 + P ~ L ~ )  -6 ~ 2 2 ( + 3  3 + P 3 ~ 3 )  

3 3 .  + (Q 3 B3 12 - P3Bz2) (W3) + B32 (W3) 

1 1 ’  - (RlBi2 - Q1B32) ( U ,  + Q L 1 - B12 (U1 + Q L + Q  i 1 
‘M ‘M ‘M 

- ( P  B1 - RlB12) 1 (VI - P L 1 - Bi2(Cl - b L - P i 1 
1 32 ‘M ‘M ‘M 

1 1 ’  - (Q B1 - PlB22) (W1 + ic 1 - B32( W1 + f, 
M 1 12 

- (P IBi l  - RIB1l) 1 (V1 - PILc& - B21 1 ‘  (V1 - i )  L 

- (QIBtl - P1BZ1) 1 (W, + i c  1 - B31 1 ’  (W, + & ) 

- P ) 
‘M ‘M 

M M 
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DEVELOPMENT OF AN AERODYNAMIC FORCE AND 
MOMENT SYSTEM IN A N  UNSTEADY AIRMASS 

The application of aerodynamic forces and moments in the simulation pro- 
gram is described in this section along with the models describing the non- 
steady a i r  mass and their effect on the aerodynamic forces and moments. 

Least squares polyn9mial curve fits to the aerodynamic coefficients data a s  
given in  References 9 and 10 provide a convenient method of representation 
of the normal, tangential, and moment coefficients a s  functions of the angle 
of attack for t\le parachute and SRB. The parachute force and moment sys- 
tem i s  shown in Figure 9 followed by the normal and tangent force and 
moment coefficients curve fits in Figures 10, 11, and 12, respectively. 

The SRB force and moment system is illustrated in Figure 13 and the SRB 
normal and tangent force and moment coefficients curve fits in Figures 14, 
15, and 16, respectively. 

Wind and m s t  models. -- To determine water entry characteristics of 
the SRB, the effects of winds and gusts near the surface of the earth on the 
attitude of the descending SRB must be accounted for. 

Wind and gust models to provide inputs to  the recovery simulation as re- 
quired by the contracting agency a r e  described as adapted from Reference 7 
and Reference 8 ,  respectively. 

Wind model: The recovery analy- * - 2f the space shuttle Solid Rocket 
Booster (SRB) requires steady-state winds to be defined in the layer of a i r  
between sea level and 3281 ft ( 1  KM). The following i s  the recommended 
550 r i s k  steady-state wind profile of Reference 7. 

11 - 0 Sh 5 582 ft 'wind (h) = 'wind (ho) 582 

582 s h  5 3281 ft 'wind (h) = 'wind (h 
0 

"wind (ho) = 69 fps 

= 3281 ft 
hO 

P = 0 .21  

(65) 

The steady-state wind profile is shown in Figure 15. 
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Gust model: Associated with the steady-state wind profile (air  mass  
velocity field) is a discrete gust environment. The gust amplitude repre- 
sents a step velocity change in the air mass velocity field. The maxinium 
gust amplitude envelope associated with the 5% r i s k  steady-state wind pro- 
file as  recommended by Reference 8 is as follows: 

lTgust 19.7 fps 0 h 5 980 f t  

9 8  = (h-980) + 19.7 980 5 h 5 3281 ft (66 'gust 2301 ( 6 6 )  

= 29.7 fps h > 3281 ft : 1st v 

The gust envelope is superimposed on the steady-state wind profile in Fig- 
u r e  17. 

Relative velocity vector: The aerodynamic forces and moments are 
functions of' the angle of attack, the altitude, the nominal area,  a reference 
length for the moments, and the velocity vector of the center of mass with 
respect to the wind. 

The velocity field of the moving air mass can be written 

v =  -fig 'wind + 'gust 

where 

V 
wg 

"wind 

-. 
is the velocity field vector 

d 

is the mean wind velocity field vector 

-. 
is the gust velocity field vector 'gust 

and all are ,  in general, altitude dependent. 

The influence of the motion of the a i r  on the body aerodynamics is accounted 
for by determining the velocity of the body with respect t o  the air to be used 
in developing the aerodynamic forces and moni**?ts. The relative motion of 
the center of pressure appears then as 
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where  
4 

C is the velocity of the center of I U ~ S S  with rrspct  to the 
earth in body coordinate directions 

w is the angular velocity of the body 

I. is the vector from the  body C h l  ta the body CP 

d 

4 

Written in matrix form, for body i 

~ ' =  =2. 

I 

c 

0 

Hi 

'Qi 
- 

- R; 

f' 0 i 

These are the velocity components used to determine the aerodynamic 
forces and moments. 

Elsewhere in the dynainical equations, inertia 1 velocities are used. 

The angle of attack is given by - 

a = i 

Va'i - 
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The side slip angle is defined as 

pi = Tan-[?] 

Aerodynamic Forces and Moments 

The aerodynamic forces acting on the parachute can be written in the body 
fixed axes directions. 

0 q s  0 

0 -q s 
O1 

O 1  
0 

(71) 

Similarly for the SRB the aerodynamic force in the body fixed directions are 

In general aerodynamic moments are written in terms of a moment coeffi- 
cient (CM) and a reference length (MRP).  The aerodynamic moments then 
about the X and Y body fixed axes whose origin is located at the M R P  taxi be 
written. - 

Sin 8, -q S M R P  0 [::;I = [ :: cos@l] [ O l  0 
M R P ]  (73) 
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The moment reference point length ( M R P )  for parachutes is generally one 
naminal diameter a k a d  of the skirt plane. 

To write the aerodynamic moments about the body fixed axes system lo- 
cated at the body center of mass, new M R P  lengths must be defined. 

The normal force is experimentally measured at  the vent of the parachute. 
The height of the canopy plus the moment reference length is given by 

0 . 3 2 5  Do + Do = 1 . 3 2 5  Do 

The moment then is 

N( 1.325 Do) , where N is the normal force 

The distance from the vent to the center of mass of the parachute is given 
bY 

0 . 3 2 5  Do + ALCM - LCM 

The functional form then of the aerodynamic moments acting on the para- 
chute written about the body fixed axes located at the parachute center of 
mass  is 

Th 

Do(O. 325 Do + ALCM - LCM) 
1.325 Do 

L 

SRB a 

0 

0 
(74)  1 

Uo(O. 325 Do + ALCM - LCM) I 
1.325- J 0 

rodynamic moment coefficients a]: defined by 

N (L3 + Ls) 
, where N is the normal force 

2 
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The functional form of the aerodynamic moments acting on the SRB written 
about the body fixed axes located at the SRB center of mass due to aero- 
dynamic normal 

[ ::x Y 

forces acting at 

= [". sinP3] 

'hi3 03 

the center of pressure is 

1 -q3s03 ( D3L4 L3+L4 ) 0 

D3 L4 
0 '3'03 ( L3+ L4) 

75) 

LINEARIZATION OF THE EQUATIONS OF MOTION 

Application of the root locus stability analysis techniques to the solution of 
the SRB recovery problem requires a linearized system of equations of 
motion. One method of linearization is to choose a reference state, say 
vertical descent, and define small disturbances about this state. After 
linearizing the aerodynamic coefficients with respect to small  changes in 
angle of attack and making appropriate substitutions, the linearized state 
is obtained by neglecting terms of order 2 and higher. This is a cumber- 
some task and the result is applicable only to the particular reference 
state originally chosen. 

A more general linearization method results from numerical techniques 
developed in Reference 11. 

Linearization Technique 

For a nonlinear system of equations implicit in time, the state can be re- 
presented as 

2 = f (X, X) (76) 

where 

t = time 

W e  want to linearize the vector nonlinear differential equations represented 
by Equation (76) at a p r t i c u l a r  point in time to. 
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b 

The methodology is to calculate the nonlinear solution of until t = t and 
then use the nonlinear solution at to as the reference state about whi& the 
equations of motion are linearized. 

Let x be the nonlinear solution of Equation (76) at time to and 'iE be the 
linearized solution at to: 

-. 

- 
x is known 
N x is to be numerically derived 

more explicitly 

Here 

f =  

for a system of n equations. 

The matrix F, (x, x) represents the first  partial derivatives of each state 
equation with respect to each state variable. The elements of Fx (Sr, 3 
a r e  determined by the central differ-nce quotient 

j' where AX. is taken to be 1 percent of K 
J 
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Further, let f = %  - 5 be the disturbance vector about E. Differentiation 
yields . .  

m -  r r ;  3 d 

5 = x - x = f (x,x) - f (ii,X). 

Rearranging te rms  . .  
.y - -  
x = x - c ;  

The mean value them-em of differential calculus allows 

(79) 

where 

and ~ 2 .  is the disturbance of the element, of 5. 
J jD 

Equation ( 8 0 )  can be solved using the matrix of partial derivatives (77). 
The solution, call it y, is linear and the desired linearized state is found 

(81) N x = :+y. 

Eigenvalues 
th Manipulation of the coefficients matrix of Equation (80) results in an n 

degree characteristic polynomial whose n roots are the eigenvalues. 

Actually the solution to Equation (80) is not found because only the eigen- 
values are required. The matrix of system (80) is transformed to Upper 
Hessenberg form. Using a Q-R procedure with double iterations and a 
convergence check, the eigenvalues to Equation (80) are approximated. 

The eigenvalues a r e  of the form 

where  Q is the real part 

w is the damped frequency 
j i s$ i  
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STABILITY ANALYSIS TECHNIQUE 

The Root locus technique plots the eigenvalues on a complex plane. The 
relative stability and transient performance of the system are directly re- 
lated to the position of the eigenvalues. The root locus plot provides a tool 
for investigating the effect of parametric variations on system response 
and stability. The sensitivity to  adjustments of a particular parameter can 
be examined and a systematic procedure can be followed to move the root 
locus to a desired position on the complex plane corresponding to  required 
stability and response characteristics. 

ANALYSIS OF THE SOLID ROCKET 
BOOSTER RECOVERY SYSTEM 

To determine an entry envelope of orientations of the SRB as functions of 
initial conditions, elasticity dynamics, and nonsteady air mass conditions, 
a wide variety of simulations were made on the nominal descent configura- 
tions from an altitude of 6000 f t  to  water impact after approximately 74 
seconds. 

NOM I NA L BAS E LIN E CONFIGURATIONS 

The cirogue and main parachutes in combination with the SRB w e r e  illustrated 
in Figures 2 and 3, respectively. Their specific dimensions a r e  listed 
in Table 1. 

SINGLE PARACHUTE EQUIVALENCE TO THE CLUSTER 

The cluster of parachutes is modeled by a single parachute having the physi- 
cal dimensions of one of the parachutes in the cluster but the mass,  inertia, 
and drag area characteristics of the entire cluster. 

In program CHUTER, described in Appendix A, all of the parachute- 
related input data a r e  for a single element of the cluster. The number of 
chutes in the cluster is also a data input. The conversion to the equivalent 
parachute is handled within the program. 

NOMINAL SYSTEMS RESPONSE TO DISTURBANCES 

Two principal modes of dieturbance or initial conditione were used in exam- 
ining the nominal systems response to initial conditione. For analytical 
purposes, the disturbances a r e  induced in only one plane and thus the motions 
are in one plane only, A "pendulum" disturbance in which the parachute, 
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TA'dLE 1 - RECOVERY SYSTEM PARAMETERS 

Drogue / 
SRB 

Parachute 
D 

S 
O 1  

O1  

LS 

L1 

MC 

Main/SRB 
(Equivalent 1 

ML 

Riser 

L2 

SRB 
D 

S 
O3 

"3 
I 

-3 

L3T 

M3 

xx3 

yy3 

I 

I 

I z z 3  

48 f t  

1810 ft2 

96 f t  

100 ft  

11 slugs 

9 slugs 

48  f t  

11.8 f t  

110.0 f t2  

81 f t  

157 f t  

5000 slugs 

8.36 x lo6 

8.36 x lo6  

6 1.96 x 10 

130 f t  

39900 f t2  

275 f t  

310 f t  

69.9 slugs 

81.6 slugs 

67 ft 

11.8 f t  

110.0 ft2 

75 ft 

145 f t  

4750.0 slugs 

7.36 x 10' 

7.36 x lo6 

1.72 x lo6 
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riser, and payload remain generally aligned while being tipped to some 
initial angle results in smaller angular excursions of the SRB with less 
damping in the transient phase of the response. 

A "scissors" disturbance is one where the parachute and riser a r e  marked- 
ly misaligned with the SRB. Response t o  this initial condition results in 
larger SRB angular excursions but with higher damping in the transient 
phase. 

Several sets  of each type of initial condition3 w e r e  imposed on the SHB/ 
Main parachute combination. To see the added effects of elasticity and 
wind, ,each set  w a s  first run without the elastic or nonsteady air m a w  op- 
tioils. The same cases were then run with the addition of elastinity only 
and rerun again with the nonsteady air mass  option only. 

For  reference, a case with no initial disturbance was  run without elasticity 
or  wind, with wind only, and with elasticity only. 

The cases specifically illustrated are listed in Table 2. 

TABLE 2 - ILLUSTRATED NONLINEAR 
SIMULATION CASES 

Configuration 

.- - 

SRB/ Main 

SRS/Main 

I SRBIMain 

Initial 
Die placem ent 

Pendulum +2 0 

Scissors 

See Fig. No. 24 

Vertical 

Pendulum 

Pendulum 

Scissors 

Pendulum 

Scissors -20  

Winds 

Gust 
e3 I Elastic I and (dcg) 

Nonlinear 
Response I :c:s 
Figures Figures 

18, 19 41, 42 

21, 22 43, 44 

25, 26 

23. 29 45, 46 

-30- 

33, 34 47, 4a 

35, 36 

37, 38 49, 50 

39, 4 0  

SRBlMain Parachute Response to Pendulum-Type 
Initial Displacements 

Pendulum-type initial disturbances of up to 30 degrees were imposed on 
the SRB/Main parachute descent configuration, The responses were similar 
in nature so that only the angular response for a +20 deg pendulum-type 
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disturbance is shown as Figure 18. In all pendulum-type initial dis?zr- 
bances with a steady air mass the parachute angular orientation ova- shoots 
by approximately 4570 and the SRB angular orientation over shoots by approx- 
imately 5570. The response is typified by the shorter period oscillations of 
the SRB as it follows the orientation of the parachute. The relative motions 
of the parachute and SRB quickly become 180 deg out of phase, and the SRB 
motion induces perturbations on the long period parachute response. 
angle of attack time history is depicted in €'igure 19 and the trajectory is 
shown in Figure 20. 

The 

SRB/ILIain Parachute Response to Scissors-Type 
Initial Conditions 

Scissors-type initial conditions of up to 60 deg misalignment w e r e  imposed 
on the SRBlMain parachute descent configurations. The responses for a 
scissors-type displacement with no wind or  elasti. .ty were similar so that 
the angular response for only one parachute initial angular displacement 
of -20 deg and a SRB initial angular disturbance of +20 deg is shown in 
(F igwe 2 1 ). 
by 180 deg out of phase oscillations of the parachute and SRB, with the 
parachute motion, again long period, driving the general motion of the SRI3 
and the SRB inducing small perturbations on the otherwise smooth para- 
chute response. 
over shoots to approximately 55%. The greatly increased moments on the 
SRB cause overshoots of approximately 170~0.  
scissors displacement is larger SRB angular excursions through the entire 
descent. 
trajectory is shown as Figure 23. 

Scissors-type initial conditions produced responses typified 

A s  in the cases with pendulum displacements the parachute 

The long-term result of a 

The angle of attack time history is shown in I ' rgure 22  and the 

SRBIDrogue Response to  an Assumed Deployment 
Condition 

The SRB, after leaving the space shuttle, is assumed to move along a t ra-  
jectory with a large angle of attack near 90 deg. Additionally, the SRB 
may be spinning about an axis approximately parallel to the trajectory. 
The object of the drogue parachute is to stabilize the SRB; that is ,  reduce 
i ts  angle of attack to sufficient conditions required for deployment of the 
main parachutes. If the SRB is spianing, the drogue parachute wi l l  also 
reduce the total angular velocity of the SRB. 

The SRB/Drogue combination is simulated at an aitituda of 20000 ft descend- 
ing vertically a t  a rate of 580 fps. Its initial angle of attack is taken to be 
80 deg and the SRB is assumed to be rotating at 40 deg/sec about the earth 
fixed Z axis. The drogue parachute, assumed to  be previously deployed, 
is initially positioned at a 10 deg yaw angle, The initial conditions are 
illuatrated in Figure 24. 
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Figure 24. Initial Deployment Conditions for 
SRB / Drogue Combination 
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The coning angle is a combination of the Euler angles 8 and d 

cone angle = cos-' (cos e co8 6) 

It ie the angle between the vertical descent line and the axis of symmetry 
of the body. The reduction ob the SRB cone angle by the action of the drogue 
parachute is shown in Figure 25. The angle of attack time histories of the 
parachute and SRB are shown in Figure 26. 

Additi-1 Effects Due to a Steady Wind and Gusts 

The application a# an air mass velocity profile (mean wind plus gusts) as 
shown in Figure 27 to the descending SRB/Main parachute conliguration, 
which is previously undfsturbed, causes a rapid increase in the downrange 
velocity of the entire system. Figure 28 shows the Euler angle, theta, time 
history of the parachute, and SRB whome initial conditions were vertical 
descent. For the same case Figure 29 s h m  the angle Oa attack time his- 
tory. The initial large positive angle of attack produces large normal 
aerodynamic forces on the parachute. The parachute swings to a large 
negative orientation angle. The SRB, with a shorter period, being driven 
by the motion of the parachute, again follows. The parachute angle of 
attack quickly reduces to small  angles while the SRB with f a r  less aero- 
dynamic pitch damping requires more time to stabilize and damp its angle 
of attack. 

Pendulum Initial Conditions -- Since the parachute is the driving force in 
the motion of the recovery system, its orientation initially with respect to 
a nansteady air mass dicktes the system response. Figtire 30 depicts the 
Euler angle theta, time history for the SRR/hIain parachute recovery sys- 
tem tipped down wind at -20 deg. The SRB and parachute orientation angles 
respond quickly to gusts at 15 sec  and 45 sec. The overall response in the 
nonsteady air mass is stable. The angle of attack time history for the 
down wind pendulum case is shown as Figure 31. The gust can easily be 
seen as large sudden changes in the angle of attack. The SRB angle of 
attack decreases near the ground as the air mass velocity field slows down 
in the boundary layer effect. 

A trafzctory typical of a11 cases run with nonsteady air mass is shown in 
Figure 32. 

If the parachute and SRB in a pendulum displacement mode are tipped into 
the wind, the re8ponse, although similar to the pendulum displacement 
downwind, is more dramatic. The increased angular excursions for a case 
tipped +20 deg is seen in Figure 33. Similarly, while the characteristic 
shape of the angle of attack time history for pendulum initial conditions is 
evident, the increased amplitudes for the syatem tipped into the wind initially 
are evident in Figure 34. 
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Scissors Initial Conditions -- As seen in Figure 21  the scissor mode initial 
conditions result in larger amplitude SRB oscillation. The application of 
an altitude-air mass  velocity profile as in Figure 27 to scissors  mode 
initial conditions of the SRB/Mrin parachute primarily causes a down wind 
drift approximately equal to the wind speed. During the initial transient 
period when the recovery system is accelerating down wind, large angular 
excursrons of both the parachute and SRB are seen (Figure 35). The SRB 
angle of attack becomes quite large as seen in Figure 36. The stability of 
tl,, system is evliient a t  15 and 45 see as seen in the angulai response 
(Fipure 35) to gust inputs. 

Additional Effects Due to Elasticity 

The inclusion of the elastic suspension line model in the nonlinear simula- 
tion allows the geometry of tb.e system to be dynamically variable. The 
change in suspension line lengths in particular changes the mass  distribution 
of the parachute slightly: thus, through the change in moments of inertia a 
slight decrease in the period of thc parachute is seen. 

In the differentiated constraint [Equation (6113 which includes the elastic 
suspension system, the velocities and accelerations betweer the b.id points 
of the riser and the confluence point and center of mass location are re- 
quired. The elastic elements flex at several freqaencies depending on the 
frequencies of the parachute, riser, and SRB oscillations. To calculate 
the velocities and accelerations required, a n u m  rical method was used to 
average the lengths over the high-frequency oscillations and then calculate 
the rates based ai a frequency approximately one-half of the SRB natural 
frequency. This frequency was chosen since the riser force peaks at each 
local maximum n~isalignment of the parachute and SRB or at  a frequency of 
one-half the SRR natural frequency. 

No significant alteration of the non-elastic response characteristics of the 
SRB/Parachute combination was seen when the elastic model was  employed. 
This is not unexpected since the variations in the suspension lines and 
riser lengths are quite small c o m p r e d  to their steady state lengths. 

The Euler angle and angle of attack responses of the SRB/Main Parachute 
co.nbination for pendulum and scissors initial conditions are shown in 
Figures 37-40. 

LINEARIZA'I'ION OF THE NOMINAL DESCENT PHASE 

The linearization techniques described in Section I1 were applied to a variety 
of cases to obtain Root Locus Plots. Using the frozen point spectrum analy- 

technique as described in Reference 11, the eigenvalue time histories 
f , ~  both perdulum and scie8ore type initial conditions are shown in Figures 
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4 1  to 44. As expected, the eigenvalues describing the fundamental wcilto- 
tory mode8 cover a wider range for scissors  initial conditione before 
settling to near the eigenvalue resulting from a vertical steady descent. 
The long period modes (parachute) are stable in all cases. The short per- 
iod mode describing the riser is stable with very siight damping. The SRB 
short  period mode, while unstable in the initial transient r e e p e e  to 
large scissors initial conditions, is after a short time ~ tab ls  and damped. 

In viewing the eigenvalue time histories, it is important to iecall some 
important features of the linearization technique used. 

The exact nonlinear state of the entire system is the 
reference state about which the linearization routine works. 

0 

0 The roots to the characteristic polymminl (the eigenvalues) 
are determined from manipulation of the matrix of first 
partial derivatives which is found by applying small  distur- 
bances to each of the nonlinear state variables about the 
reference state. 

0 The resulting eigenvalues can each be related to a funda- 
mental oscillatory mode af one of the state variables. 

The location of a single eigenvalue in the complex plane 
represents the local stability characteristics of the state 
variable it is associated with with respsct to the exact non- 
linear condition of that state variable from which the eigen- 
value was calculated. 

0 
' 

e The overall stability of the entire system is a function of 
the interaction of all the nonlinear motions. 

Stability with Respect to Non-Steady A i r  Mae6 

Figures 45 to 48 show eigenvalue time histories for the SRBlhiain configura- 
tion with no initial disturbance and a +20 deg pendulum disturbance. In a 
non steady a i r  mass the stability of the reemnee indicated by the eigen- 
values is demonstrated through the trane!r?nt reaponse and the first gust a t  
15 sec. 

Stability with Respect to Elasticity 

The eigenvalue time historiee for the principal oscillatory modes of the 
SRBIMain Parachute combination wirh e l a ~ t i c  suspension system when a 
pendulum initial disturbance is applied are shown in Figures 49 and 50. 
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When compared with Figures 41 and 42, no degradation of stability because 
of elasticity is seen. 

? '  
LIMIT CYCLE RESPONSES 

Throughout the investigations of this particular recovery system, special 
attention was paid to the possible Occurrence of limit cycles. In no case 
treated has a limit cycle been observed or eigenvalues calculated which 
would indicate long-term undamped oscillatory motion of any component of 
the system. 

CONCLUE :Om 

In all cases tested on the nonlinear computer simulation program, the 
recovery configurations were  stable. The cases tested represent the full 
range of expected disturbances. From the 6000-ft altitude at  which the 
main parachutes are deployed, the recovery system would reach a vertical 
descent attitude if it w e r e  not for the wind. The response to the wind 
causes gliding down wind. The trajectory is determined by the vertical 
descent rate and the wind speed. 

Although additional dynamics are induced by the elasticity of the suspension 
system, the overall response is not adversely affected. Large spring con- 
stants should be used to avoid sling-shot effects during transient periods of 
response. 

RECOMMENDATIONS 

The development of the present math model and computer simulation paves 
the way for useful extensions and generalizations of the analysis to  provide 
a more complete and realistic representation of the entire recovery pro- 
cess including the Opening Dynamics phase. 

INCORPORATION OF PARACHUTE OPENING 
DYNAMICS IN THE MATH MODEL 

An important consideration in the overall dynamics of the parachute recov- 
e ry  process is the deployment and inflation of the parachute, the process 
referred to in the literature as Opening Dynamics. 

An opening dynamice analyeis would establish the most realietic initial 
conditions possible by including the inflation process of the deceleration 



system. The period in the descent phase between drogue stabilization of 
the SRB and fully inflated main parachutes sees the speed of the SRB drop 
dramatically. The dynamics of this period as described by an opening 
dynamics model would furnish more accurate initial conditions for the final 
descent and water impact. There are several Opening Dynamics theories 
which employ such concepts as dimension less parachute filling time, 
canopy volume as a function of filling time, drag areas and drag coefficient 
as functions of filling time, etc. Factors affecting the dynamics of the 
opening parachute are the canopy mass, suspension line mass,  included 
and apparent masses, and moments of inertia both real and apparent of the 
inflatin canopy. Experimental data have been collected and empirical 

It appears, therefore, very desirable to add the parachute Opening Dynamics 
to the computer simulation model based on state of the art models and in- 
cluding snatch force and opening shock calculations for the inflating para- 
chute through reefed stages to steady state. 

model8 %A ve been developed. 

RELAXATION OF GEOMETRIC CONSTRAINTS 

By relaxing geometric axial symmetry constraints af the present math 
model, greater realism and additional flexibility would be obtained for  use 
in stability and design analysis. 

If one allows off-axis of symmetry attach points on the SRB and the con- 
fluence point, then individual suspension line stretch and stretch rates must 
be accounted for. 

Another possible generalization would consider the parachute and/or the 
SRB to have a plane of symmetry instead of an axis of symmetry. Such a 
generalization increases the complexity of the analysis and permits the 
consideration of "gliding" decelerators and/or finned SRBs. 
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APPENDIX A 
DOCUMENTATION OF THE PARACHUTE 

DYNAMICS AND STABILITY ANALYSIS 
PROGRAMMING SYSTEM 

Computer programs describing the descent dynamics and stability analysis 
of a parachute payload system are described. 

The overall program is called CHUTER. Th,: programs are developed in 
FORTRAN IV programming languags. There are several running mode 
options. The basic running mode (no supplementary options employed) is 
simply a nonlinear dynamic simulation. Three supplementary options can 
be attached to the basic running mode. 

0 Elasticity. The use of the elastic option causes the riser 
and suspension lines to become dynamically elastic and 
the nonlinear simulation to reflect the influence of the 
additional dynamics. 

Non Steady A i r  Mass. The use of the non steady air mass  
option enables the subroutines describing wind and gust 
conditions to be imposed on the descending recovery sys-  
tem. The aerodynamic effects of the imposed non steady 
air mass  are then accounted for. 

0 

o A third supplementary option enables the linearization 
subroutines to be incorporated in the analysis. Their u se  
causes the nonlinear equations of motion to be linearized 
at intervals in time using as a reference state the exact 
nonlinear state at the particular time. Eigenvalues for 
the linearized equations of motion are determined. 

OVERALL PROGRAM ORGANIZATION 

The overall organization finds the main program directing a d  controlling 
the subsequent operation of the several  subroutines as well as data input 
functions. The overall organization is diagrammed in Figure A 1  showing 
the subroutinee and available analysis options. 

The principal variables describing the state of the system are contained in 
the "Y-array" and are passed through the various subroutines in the common 
block : 

COMMON / AA B / Y ( 3 3 ) , 
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Simulation 

S/R OIFEQN 

Aerodynamics 

S/R COEFTS 
S/R FORCES I S/R MOMENTS 

I Kinematics I 
S/R CHUTE 
S/R DIRCOS I S/R DBDT 

I I 

S/R ELASTIC 

S/R WIND 
S/R GUST 

Subroutines 

I 

lntegation 

S/R PRECOR 

Linearization 

I I 
Derivatives I S/R DERIVE 1 
Eigen values 1 

S/R HESSEN 
SIR QR 
S I R  QR CALL 

Information 

S/R PRINT 

Figure A l .  Overall Structure of Program CHUTER 
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The time rates of change of the state variables are contained in the "D-array" 
element h v i n g  the same index and are passed through the various subroutines 
in the common block: 

COMMON/ AAC' / D( 30) 

The principal variables are listed in Table A l .  Nearly all other parameters 
and variables and constants which are required by more than one subroutiiie , 

are passed through a series of common blocks containing related arguments. 

CHUTER INPUT~OUTPUT 

Input Description 

An input card deck of 14 cards provides the required information for initial- 
ization and control. The input data deck is described in Table A2. 

Out put Description 

There a r e  two forms of information output from CHUTER. The line printer 
output provides detailed information on. the nonlinear simulation a t  chosen 
time points along the trajectory, the interval being DTP. When the lineari- 
zation option is employed, the eigenvalues of the linearized systerii a-e 
printed for the points along the trajectory at which the nonlinear . *  1 m is 
linearized. 

A plotting subroutine is included which charts information generated by the 
nonlinear simulation subroutines. Additional charts a r e  drawn if the elastic 
or non steady a i r  mass option is employed. 

The line printer output during nonlinear simulation consists of groups of 
four lines each corresponding to the time printed at the left of the page. 
Each page is headed by column labels. 

When the linearizatiofi routines a r e  employed, the eigenvalues a t  the se- 
lected linearization points a r e  stored until a single page can be printed with 
the eigenvalues for the previous five linearized points. 

For each new run a run title page is printed listing the supplementary op- 
tions employed, and a data deck reproduction is made for reference. An 
illustration is drawn on which the principal system initial geometric para- 
meters a r e  noted. 

The line printer output continues through the maximum simulation time or 
water impact. The exact state at that point is printed, 
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TABLE A1 - TYPICAL DATA CARD INPUT DECK 
(CONTINUED) 

- _  
Data Description (All  Data ie Floating Point) 

Card 1. FoFm8t (2F 8.0) 

Variable units 
Y (30)  a 
HOCYT fpe 

Card 2 Format (6F 8.0)  

Variable 
DS 
Ls 
U T  
u 
M3 
ss 

Cerd 3 Format (3E 10.5) 

Variable 
m3 
IYY 3 
122 3 

Card 4 Format (8F 8.0)  

Variable 
EEciJ (Array) 

Card 5 Format (9F 8.0)  

Variable 
BCT (Array) 

Units 
ft 
ft 
f t  
f t  
Slugs 
ft2 

- 

Units 
slug ft2 
slug ft2 
slug ft2 

Units --- 

- Units --- 

Definition 
Initial altitude 
Rate of Descent 

Definition 
SRB Diameter 
SRB CM Location 
SRB Total length 
SRB C P  Location 
SRB Mass 
SRB Cross Section A r e a  

Definition 
SRB Inertia about its X axis 
SRB Inertia about its Y axis 
SRB Inertia about i ts  Z axis 

Definition 
Constants in the polynomial 
describing the normal force 
coefficient of the SRB 

Definitiaq 
Constants in the polynomial 
describing the tangent force 
coefficient of the SRB 



TABLE A1 - TYPICAL DATA CARD INPUT DECK 
(CONTINUED) 

Data Description 

Card 6 Format (9F 8 .0 )  

Variable 
BCM (Array) 

Card 7 Format (9F 8 .0 )  

Variable 
Do 
L, 1 

LSO 

M 
NIC 
ML 
LCM 

SI 
CLUST 

Card 8 Format (9F 8.0  

Variable 
ACN (Array) 

ACT (Array) 

Card 9 Format (9F 8 . 0 )  

Variable 
ACM (Array) 

Units 
--- 

units 
ft 
ft 

f t  

slugs 
slugs 
ft 

--- 

ft2 
-0 -  

Units --- 
- 0 -  

Units 
--- 

Definition 
Constants in the polynomial 
describing the moment coeffi- 
cient of the SRB 

Description 
Parachute nominal diameter 
Length from confluence point to 
parachute CP 
Initial value of suspension line 
length 
Number of suspension lines 
Mass of canopy 
M a s s  of lines 
Initial guess at parachute CM 
distance from confluence point 
Nominal parachute area 
Number of chutes in cluster 

Description 
Constants in the polynomial 
describing the parachute normal 
force coefficient 
Constants in the polynomial 
describing the parachute tangenl 
force coefficient 

Description 
Constants in the polynomial 
describing the parachute 
moment coefficient 
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TABLE A1 - TYPICAL DATA CARD INPUT DECK 
(COYCLUDED) 

Data Description 

Card 10 (Format (1F 8.0)  

Variable 
L20 

Card 11 Format (6F 8.0) 

Card 13 Format (1F 8.0) 

Variable 
TMAX 

Card 14 Format (3F 8.0) 

Variable 
W I N D  
YELAST 
fLIN 

Units  Description 
f t  Nominal riser length 
- 

Unft 
S e C  

Description 
Initial Pl 
Initial Q1 
Initial R1 
Initial d l  
Initial 81 
Initial *1 

Description 
Initial P3 
Initial Q3 
Initial R3 
Initial (63 
Initial 93 
Initial +3 

Deecription 
Maximum time 

Descritrtian 
Wind option, l-yes, O-no 
Elastic option, 1-yes, O-no 
Linearization option, 1 -yes, 
O-no 
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A typical page showing information on the nonlinear simulation is shown in 
Figure A2, and a page showing the eigenvalues at selected points is shown 
as Figure A3. 

PROGRAM DESCRIPTION 

Main Program 

CHUTER is a series of subroutines whose operation is controlled by the 
MAIN program to provide nodinear and linear analysis. The MAIN pro- 
gram is diagrammed in Figure A4 and a source listing is presented in 
Figure AS. 

The MAIN program is broken down into three parts. The first is input and 
establishes constants and control variables. The second segment initial- 
izes the elastic variables, sets angles and angular rates to units of radians, 
sets the initial velocities in the body fixed coordinates, and establishes the 
directic? cosines matrix corresponding to the initial conditions. Finally, 
the third segment is a high-frequency loop which r u n s  the nonlinear simu- 
lation. 

The high-frequency loop is initially entered with mode and t ime = 0 ,  which 
causes the initial conditions to be output by subroutine PRINT. Successive 
passes through the loop increase the MODE to its nominal value of 4 or 5 
depending on whether subroutine PRECOR is about to predict o r  about to 
correct. 

Elasticity initial conditions (i. e. , riser and parachute center of mass  
lengths) are updated through time = 0.25, at which point the numerical 
detezmination of elastic rates begins, 

Time = 0.25 is an arbi t rary but convenient t ime greater than time = 0 since 
at time = 0 the elastic elements are unstressed. 

There are four normal exits from the high-frequency loop. After the print 
tj,ne interval DTP the loop is exited by a call to subroutine PRINT. The 
iccond normal exit occurs when a water impact occurs. This is sensed by 

comparing the altitude with length from the SRB center of mass  to  the 
engine end. The third normal exit occurs when the simulation t ime exceeds 
TMAX. '!'he fourth normal exit occurs when a point in time is reached 
about which a linearieed solution is to be found. 

The subroutines ueed with CHUTER are listed in Table A3. 
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Figure A4, CHUTER Main Program Flow Diagram 
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Figure A4. CHUTER Main Program Flow Diagram (Continued) 
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Figure A4. CHUTER Main Program Flow Diagram (Continued) 
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Figure AS. Maiii P-ogram Source Listing (Continued) 



FLgur8 Ab, Main Program Source Listing (Continued) 
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Figure AS. Main Program Source Listing (Continued) 
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Figure AS. Main Program Source Listing (Concluded) 
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Basic Subroutines 

The basic subrar t ims are those which describe the aerodynamics, the c'y- 
namics, or the kinematics d the nonlinear simulation, the nonsteady L c 
mass models, and techniques used in the linearization of the eqi*atiot,s d 
motion. A l l  the other subroutines are manipulatory in nature aid hence are 
termed auxiliary subroutines. 

0-  Subroutine DIFEQN implements the system of  differ- 
-quatiom (16 )  to  (391, (52) to  (SQ)]. The time der: vat ive s 
of each of the state variables and the riser force a re  calculated, Moments 
about the body fixed axes for the parachute and SRB are updated due to the 
change in riser force. During the Runge-Kutta initialization steps an3 the 
predictor step of subroutine PRECOR, the section of DIFEQN contilining the 
equations coupled by the riser constraint is looped through four times to  
ensure that the influence of the coupled terms is uniform. Subroutine 
DIFEQN is diagramed in  Figure A6 and a slwrce listing is presented in 
Figure A7. Table A4 presents a list of symbols for DIFEQN. 

routure CHUTE -0  Subroutine CHUTE computes the geometric and initial 
characteristics of the parachute as a function of time, Also calculated is 
the  air density a s  a function of altitude. 

The parameter CLUST, passed in calls to CHUI'E, represents the number 
of chutes in the cluster. As al l  the input data were for a single chute, the 
mass and inertia a r e  multiplied by CLUST to form the mass and inertial 
characteristics of the single chute equivalence to the cluster. 

The parachute center of mass location is calculated a s  a function of the 
canopy mass,  the suspension line mass,  and the mass  of the a i r  included 
in the canopy, 

Finally, when the elasticity option is employed, the ELASTIC subroutine is 
called to compute the rates of change of the lengths of the elastic elements. 

Subroutine CHUTE is diagramed in Figure A 8  and principal variables a re  
defined in Table AS. A listing of CHUTE is given in Figure A9. 

:orrnal and tangential force8 and the moments OK4 the parachute and payload, 

The coefficients for normal force and moments a re  calculated a s  a function 
of the angle of attack, a ,  using the polynomial form. 

ubroutine CQEFTS -- Aerodynamic coefficients a r e  calculated for the 

C l a + C 2 u  2 + C 3 a  3 +...... + C 8 a  8 + C g a  9 
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Figure A6. Subroutine DIFEQN Flow Diagram 
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Figure A7. Subroutine DIFEQN Source Listing 
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Figure A7. Subroutine DIFEQN Source Listing (Concluded) 
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TABLE A4 -LIST OF SYMBOLS FOR SUBROUTINE DIFEQN 

Units 
2 ft / sec 

ft / sec 

ft /sec 

rad/sec 

rad/ sec 

radlsec 

radlsec 

rad/ sec 

rad/sec 

ft  / sec 

2 ft  / sec 
2 ft/€#c 

rad/ sec 

rad/ sec 

radlsec 

rad/ sec 

radlsec 

rbrd/sec 

rad/ sec 

rad/ sec 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Description 

Parachute CM linear accelerations 
in XYZ body fixed axes directions . 

c 

Parachute angular accelerations 
around XYZ body fixed axes 

Parachute reference frame Euler 
angular rates 

SRB CM linear acceleration in XYZ 
body f’ued axes 

SEC B angular accelerations around 
XYZ body fixed axes 

IRB reference frame Euler angle rates 

tieer angular accelerations about XY 
body fixed axes 



TABLE A4 - LIST OF SYMBOLS FOR SUBROUTINE DIFEQN (CONCLUDED) 

W t i t y  I Mnemonic 1 Units 1 Description 

02 

62 

i2 

x E 3  

D(29) 

D(30) 

F2 

rad/ see 

rad/ sec 

rad/ sec 

ft / sec 

ft /sec 

ft /sec 

lbs 

Riser reference frame Euler angle 
rates 

Down 
rates 
mass 

range, cross range, and altitude 
of change of the SRB center of 

Riser force 
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CMnpUtc 
Ah density 
Apparentmass 
Cei*s of ittass kcatioii 
Swpensioti l i n e  angle 

0 Riser Ieogth 
Cents of prcss~trc locattoti 

ELAST =O.  0-- 
E 5  MP - Ml+MlA 

I Z V 1  -. 1221 - IW1 
IXZX = I X X l  - 1221 a l V X l  Iw1 - l X X l  

Figure A8. Subroutine CHUTE Flow Diagram 
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Figure AO. Subroutine CHUTE Source 'iirrtinq 
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TABLE A5 - LIST OF SYMBOLS FOR SUBROUTINE CHUTE 

&uantitv 
ALCM 

MI 
Y 

lXXA 1 

IYyA1 

'''A1 
IXX* 
IYY* 
rzz* 
L C M  

LcP 

Ls 
L1 
L2 
L3 

L4 

N 

mS 

"L 

mP 

"1 

*la 

"3 

Mnemonic 
A LCM 

Ck PMAS 
GAMMA 
-1 

ryYAi 

IZZA 1 

I X x l O  
IYYlO 
IZZ10 
LCM 

LCP 

LS 
L1 
L2 
L3 

LA 

M 
MC 

ML 

MP 

M1 

M1A 

M3 

Unit s 
f t  

slugs 
rad 

f t  

f t  

f t  
f t  
f t  
f t  

f t  

--- 
Slug6 

eluge 

eluge 

sluge 

eluge 

eluge 

Description 
Length, confluence point to plane of 
skirt 
Included mass 
Suspension line angle 
Apparent mass  tensor 

Diagonal Elements 

Total parachute 
Inertia Matrix 
Diagonal Elements 
Length, confluence point to plane of 
ekirt 
Length, plane of sk i r t  to center of 
pree s u r  e 
Suspension line length 
LCM + LCP 
Riser length 
SRB Center of M a s s  Location from 
nose 
SRB Center of pressure location 
from center of mass 
Number of suspension lines 
Canopy mas8 

I 
I 

Suepeneion lines mass 

+ "la 

mc + m L 
Apparent maee 

SRB mass 
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TABLE A5 - LIST OF SYMBOLS FOR SUBRG'JTINE CHUTE 
(CONCLUDED) 

* 
Quantity 

R 

RO 

O1 

O3 

S 

S 

RHO I slugs/ft3 
RO 

s1 

s3 

xc 
zc 
XSL 
ZSL 

f t  

it2 

f t2  

slug f t  2 
2 
2 
2 

slug ft 
slug ft 
slug ft 

-.. Description 

A i r  density 
Skirt diameter 

Nominal area of parachute 

Nominal area SRB 

Canopy moments of inertia 

1 ~uepension lines moments of ineiwtia 

I 
Coefficients for the tangent force a r e  calculated as function of the angle of 
attack, a, using the pilynomial form 

C 1 Q + C 2 P  2 + C 3 @  3 +...... + C * a  8 + C p  9 

Specifically for the parachute the normal force coefficient polynomial is of 
order three, the tangent force coefficient polynomial ie of order five, and 
the moment coefficient polynomial is of order eight. 

The SRB normal force coefficient polynomial is of order eight, the tangent 
force coefficient polynomial ie of order five, and the moment Coefficient 
polynomial is of order nine, 

Angle of [sttack -- The angle of attack is defined as the angle between the 
body axie ob eymmetry and the relative velocity vector, 

Siderrli An le -- The ride rrlip angle is defined for thie problem to be the 
-the body fixed X axis and the projection of the relative velo- 
city vector on the body fixed X-Y plane, Thuo, 

129 



Subroutine COEFTS is diagrammed in Figure A10 and listed in Figure A ?  1. 
Principal variables are listed in Table A6. 

Subroutine FORCES, Subroutine MOMENTS - - The subroutines FORCES 
and MOMENTS calculate the aerodynamic forces and total extcinal (ae-o- 
dynamic and constraint) moments on the parachute and the paylos- , The 
dynamic pressure at the center of pressure of each body i3 calculated. 

Subyoutine FORCES is diagrammed in Figure A12 and listed in Figure 
A13, and its principal variables are listed in Table A?. 

Subvoutine MOMENTS is diagrammed in Figure AS4 and listed in Figure 
A15, and its principal variables listed in Table A8. 

Subroutine DIRCOS, Subroutine DBDT -- Subroutines DIHCOS acd Sub- 
routine DBOT calculate and manipulate the matrices of direction cosiiies 
describing the orientations of the-reference frame, parachute, r i se r ,  and 
payioad with respect to the earth. DIRCOS calcuia(es the immediate direc- 
tion cc;sines matrices as functioys of the Euler angles at each integration 
step. 

For relrolution of the riser force (the constraint force) into the parachute 
and payload reference frames rlirectiow, -**.?tion cosines matr . s a r e  
formed describing the orientations of . 5  I - fixed axis system , lth 
respect to the parachute and the payload l jdy  A x e d  axes Bystcms. 

Subroutine DIRCOS id diagrammed in  Figure A16 and lioted in Figure A17, 
and its principal variables defined in Table A9, 

Subroutines DBDT is eiagrammed in Figure A16 and listed in Figure A19, 
and its principal variables defined in  Table AlO. 

Subroutine PRECOR - - Subroutine PRECOR integrates the equations of 
motion using a Runge Kutta initialization and a predictor-corrector integra- 
tion algorithm (Ref. 12). 

The Runge Kutta method establishee values for  the state vector a t  time 
zero and a t  time equal to one integration step size. Leiiig these +WQ initial 
points the state vector is updated in the predictor mode (mode = 5) and 
time is increased one integration step size. The corrector mode (mode = 
6) refines the prediction made when mode = 5. Completion of the correc- 
tione returns control to the main program for calculation of everything 
areociated with the newly calculated etate vector. 
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Compute the 
speeds of SRB 
and chute CMS 

I Conlpltte speeds of 
SRB and chute 
CP WRT air I CF1, CF3 

Cocttpute attgles of 
attack atd angles 
between X body axis 
and projection of 
CFi 011 Xi Yi plane 
BETA1, BETA3 

tangent and 
normal force 
and moment 
coefficients 

Return e 
Figure A10, Subroutine COEFTS Flow Diagram 

131 



-Y fS I . (L I -CC 

14 1 411-u 1 GI I* 

Figure A l l .  Subroutine COEFTS Source Listing 
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TABLE A6 - LJST OF SYMBOLS FOR SUBROUTINE COEFTS 

Mnemonic 

A C M  

ACN 

A C T  

ALPHA 1 

ALPHA 3 

BCM 
BCN 
BCT 

BETA 1 

BETA 3 

CF1 

CF3 

CMl 

CM3 

CN1 

CN3 

CT1 

CT3 

Cl 

c 3  

Units Description 

Constants in polynomials 
for parachute aerodynamic 
coefficient 

Parachute angle of attack 

SRB angle of attack 

Constants in polynomials 
for SRB aerodynamic 
coefficients 

Parachute sideslip angle 

SRB sideslip angle 

Velocities squared of the parachute 
CP's WRT 
the moving air mass  I SRB 

parachute 
Moment coefficients I SRB 

Normal force coefficients 
parachute 

SRB 

parachute 
Tangent force coefficients 

1 

Inertial velocities parachute 

Squared 
.. .. -.-. . . --_ 
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I Q S l  = 1/2 RHO * SI * C F l  
QS3 = 1/2 RHO * S3 *CF3  

F 1 X  = CN *QS1 *COS (BETA11 
F l Y  = CN- Q S l  *SIN (BETA11 

F 3 X  = CN3 tQS3 *COS (BETA31 
F 3 Y  = CN3 *QS3 *SIN (BETA 31 

F l Z = - C T  T Q S l  

F 3 Z  = -CT3 *QS3 

Figure A12. Subroutine FORCES Flow Diagram 
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Figure A13. Subroutine FORCES Source Listing 

TABLE A7 - LIST OF SYMBOLS FOR SUBROUTINE FORCES 

Quantity 

FIX 

FIZ 

F3X 

F3Y 

F3Z 

q&J1 

qgso3 

Mnemonic 

F1X 

F l Y  

F1Z 

F3X 

F3Y 

F3Z 

QSl 

QS3 

_ _ _ ~ ~ _  
Units 

l b  

lb 

Ib 

lb 

lb 

lb 

lb / ft2 

lb/ft2 

parachute aerodynamic 

forces in XYZ 

body fixed axes directions 

SRB aerodynamic forcts 

in XYZ body fixed I directions 
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Q S l ,  QS3 

Compute moments 
acting on 
parachute 

MlX, MlY, M1Z 

Compute moments 
acting on 
SRB 

M3X, M3Y, M3Z 

I 
Return I 

Figure A14. Subroutine Momenta Flow Diagram 
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Figure A15. Subroutine Moments Source Listing 

TABLE A8 - LIST OF SYMBOLS FOR SUBROUTINE MOMENTS 

MIY 

MsX 

M3Z 

M3Y 

total external moments 

about XYZ parachute 

body fixed axes 

total external moments 

about XYZ SRB 

body fixed axel 

I 
I 

MIX ft-lb 

M1Y ft-lb 

M1Z ft-lb 

M3X ft-lb 

M3Y ft-lb 

M3Z ft-lb 
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I 
~ ~ 

Compute the direction 
cosines matrix for 
each body rdat ive to 
the earth 

1 

Compute the elements of the third 

column of the matrix operations 

[B l [ B  I 
[B I I B  1 

1 2 T  

3 2 T  

1 

Figure A16. Subroutine DIRCOS Flow Diagram 
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Figure A17. Subroutine DIRCOS Source Listing 
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TABLE A9 - LIST OF SYMBOIS FOR SUBROUTINE DIRCOG 

Mnemonic Unite Description 

Direction cosine matrix 
elements i, k = 1, 2, 3 

j = 1 parachute 
j = 2 riser 
j = 3 SRB 

used for rotating a vector in 
Earth coordinates to one in 
j coordinate system 

proportion of F2 projected 

on X, Y, 2 parachute 

body-fixed axes 

proportion of F2 projected 

on X, Y ,  2 SRB body 

fixed axes 
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Start (2 

Conipute 

-AA(l) AB(1) - AC(1) 

- [B  I = -AA(2) AB(2) -AC(2) 
dt d 2 T I  -AA(3) AB(3) - AC(3) 1 
N Co ttipu te 

+1 Return 

(-) 
Figure A i 8 .  Subroutine DBDT Flow Diagram 
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Figure A19. Subroutine DBDT Source Listing 

TABLE A10 - LIST OF SYMBOLS FOB SUBROUTINE DBDT 

Quantity 

--- 
-*e 

Mnemonic 

AA (array) 

AB (array) 

AC (array) 

units Des c ripti on 
~~ 

Array containing elements 
of the first columns of the 
time derivatives matrices 
of bodies 1, 2, and 3 

Second column elements 

Third column elements 
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Subroutine PRECOR is diagrammed in Figure A20 and listed in Figure 
A21, and its principal variables are lieted in Table A l l .  

Subroutine WIND - - Subroutine WIND calculates a t  each integration step 
the value of the 570 r i s k  wind speed profile as a function of the altitude. 
The winti velocity vector is assumed to be aligned with the earth-fixed 
reference frame X axis. 

Subroutine WIND is diagrammed in Figure A22 and listed in Figure A23, 
and its principal variables are listed in Table A12. 

Subroutine GUST -- Subroutine GUST computes a step change in the air 
mass  velocity vector according to a 570 r i sk  gust envelope related to tiit 
570 risk wind profile. The step changes are calculated at a frequency of 
fou r  per minute of simulation time and are both sign and magnitude modified 
by a random function. 

Subroutine GUST is diag nmmed in Figure A24 and listed in Figure A25, and 
its principal variables are listed in Table A13. 

Subroutine ELASTIC - - When the elasticity option is employed, subroutine 
ELASTIC is called at two-second intervals to determine the first and 
second time derivatives of the lengths of the elastic elements, the r i s e r ,  
and the suspension lines. The method employs a central difference method 
on an averaged length. 

Subroutine ELASTIC is diabrammed in Figure A26 and listed in Figure 
A27, and its principal variables are listed in Table A16. 

Subroutine PRINT - - Subroutine PRINT controls the line printer operation 
and loads plotting storage arrays.  Ten groups of data are printed on each 
page, This is adjusted by changing the line output counter (LOCI, When the 
number of groups printed equals L E ,  a heading is printed at the top of the 
next page and the LOC is set to  zero. 

Corresponding to each output group, the values for altitude, range, angles 
d attack, pitch angles (ei), r i se r  force, riser length, center of parachute 
mass, and the a i r  mass velocity a r e  loaded into arrays for use in plotting. 

Subroutine PRINT is diagrammed in Figure A28 and listed in Figure A29. 
Its principal variables a r e  listed in Table A15. 

Subroutine CONST --S ubroutine CONST calculates a group of variable com- 
binations used in the differential equations subroutine DIFEQN that result 
from the method of coupling of the parachute and payload. Generally, these 
are the accelerations of the confluence point and attach point in components 
parallel to the earth fixed axis system. 

Subroutine CONST is diagrammed in Figure A30 and listed in Figure A31. 
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1 
TEST WDE 

1 

TINES +I a 

TIME = TIME t n 
J = O  I 

I 

Figure 620. 

L--l MODE-4 

Subroutine PHECOR Source Listing 
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TABLE A l l  - LIST OF SYMBOLS FOR SUBROUTINE PRECOR - 
Quantity Mnemonic Description 

corrected value Y(1) I t+H 

i Y(J1(t 

- Y(I)lt+H 
dt 

stepsize 

MODE = 4, Runge Kutta initialization 
MODE = 5, Predict MODE = 6 
correct 

number of equations 

predicted value Y(I)I t+H 

time 

state vector 
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. 
RETURN 

Figure A22. Subroutine WIND Flow Diagram 
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C 

-_ 
vwint? WIND ft Isec mean wind speed - 

Figure A23. Subroutine WIND Source Listing 

Quantity Mnemonic Units I Description 



4 

Figure A24. Subroutine GUST Flow Diagram 

VGUST= 19.8 . 

14 9 

a VGUST= 29.7 

& 

%UST = 10.8 [ALT-9901+ 18.9 
2290 

> 

call 
RANDU 
(YFU 

4 

VGUST = 
VCUST *YFL 

L 

Retm 

- 



20 

30 

40 
50 

C YFL 

Quantity Mnemonic 

VGUST 
- 

'GUST 
--- YFL 

RETURN 
END 

Uni t s  Description 

ft/sec gust velocity 

--- random modifier 
in range -1  L YFL s 1 

* 

Figure A25. Subroutine GUST Source Listing 
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= (AVERAl-OVERAlVDT I L2DDOT L200T = (AL2 -L2  DOTVDT 

LCM DOT = (AVERA2-OVERA2)/DT 

LCM DDT = (AL3 - LCM W T V D T  

O K R A 1  = AVERAl 

OVERA2 = AVERA2 

Figure A26. Subroutine ELASTIC Flow Diagram 
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Figure A27. Subroutine ELASTIC Source Listing 
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TABLE A14 - LIST OF SYMBOLS FOR SUBROUTINE ELASTIC 

Mnemonic 

A L 1  

AL2 

A L 3  

A t 4  

AVERAl 

AVERA2 

DT 
LCM 

LCMDOT 

L2 

L2DOT 

OVERA 1 

OVERA 2 

TIME 

Units 

f t  

f t  l sec  

f t  

f t lsec 

f t  

f t  

sec  
ft 

ftlsec 

f t  

ftlsec 

f t  

f t  

sec 

DescriDtion 

Last calculated value L2 

Last calculated value i2 
Last calculated value Lc 

Last calculated value Lc 

Average value of during interval 
from t - DT to t -%TI2 
Average value of Lc 

from t - DT12 to t 
Averaging interval 
Length from confluence point to para- 
chute center of mas8 

M 

M 

during interval 
M 

L a t t  - D T / 2  at Gd 
Len&? of riser 
d dt - L  CM at t - DT/2 

Average value of L2 during the inter- 
val from t - DT to DT/2 
Average value of Lc during the 

M 
interval from t - DT to t - DT12 
time 

153 



LOC = 10 

t 

Call RcWn 
TORAD 

c o m e  
Y(311, Y(32), Y(33) 

Call 
TODEG 

LOC = 0 

I 

Write 
one output 
set 

P 

I 
. 

LOC = LOC + 1 I 
Load plot 1̂ 1 

LOC = 10 

1 

4 

Figure A28. Subroutine PRINT Flow Diagram 
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360 

' IS0 
920 

135 

400 
500 

Figure A29. Subroutine PRINT Source Liclting 
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TABLE A15 - LIST OF SYMBOLS FOR SUBROUTINE PRINT 

Mnemonic 

ALP1 

ALT 

A P 1  

AP3 

CL 

E l  

E3 

FOR 

LOC 

NOBS 

RL 

RNG 

THE1 

THE3 

WG = WIGU 

xx 

Description 

parachute angle of attack 

plotting storage array,  altitude 

plotting storage a r r ay  parachute 
angle of attack 

plotting storage a r ray  SRB angle of 
attack 

plotting storc.:e array,  LC 

speed, parachute center of mass  

M 

speed, SRB center of mass 

plotting storage array,  riser force 

line output count 

number of points in each curve 

plotting storage array,  riser length 

plotting storage array,  range 

plotting storage array,  O1 

plotting storage array,  O3 

air maes velocity vector 

plotting storage array,  time 
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Compute 

(D(1) + D(5) * LCM + Y(5) :'r LCMDOT) * B(1, 1, i) 

(D(2) 4 (D(4) * LCM +Y(4) * LCMDOT) .:B(1,2, i? 

(D(10) - D(14) * L3) * B(3, 1, i) 

(D(13.1 + D(13) * L3) *B(3, 2 ,  i) 

(D(12)) *B(3,3, i) 

Return 

J 

i = 1, 2, 3 

D(3) + LCMDOT 

Figul? A30, Subroutine CONST T o w  Diagram 
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Figure A31. Subroutine CONST Source Listing 
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Subroutine INVELO -- Subroutine INVELO initializes the inertial components 
of velocity in the body fixed axis systems at time zero  for the initial orien- 
tations and vertical rate of descent as read in the input data deck. 

Subroutine INVELO is diagrammed in Figure A32 and listed in Fibme A33. 

Auxiliary Subroutines 

Auxiliary trigonometric functions SEC provided. SEC is listed as Figure 
A34. 

Subroutine SRBIN calculates the SRB inertial differences as used in Equa- 
ticm (8A). Subroutine SRBIN is listed as Figure A35. 

Subroutine TORAD converts angles and angular velocities to radians and 
radians per second. Subroutine TORAD is listed as Figure A36. 

Subroutine TODEG converts angles and angular velocities to degrees and 
degrees per second. 

Subroutine RANDU calculates a random number in the range -1 to +l. 
routine RANDU is listed as Figure A38. 

Subroutine TODEG is listed as Figure A37. 

Sub- 

Linearization Subroutines 

F $e subroutines make up the package to linearize and find the eigenvalues 
for a set  of nonlinear differential equations. 

Subrourine DERIVE calculates the first partial derivative matrix. Sub- 
routine DERIVE is listed as Figure A39. 

Subroutine EIGEN is called from subroutine DERIVE and performs the 
control, storage, and output functions for the eigenvalue calculation pro- 
cess. Subroutine EIGEN is listed in Figure A40. 

Subroutine HESSEN is called from subroutine EIGEN and maaipulates the 
matrix of first partial derivatives into the upper Hessenberg form. Sub- 
routine HESSEN is listed in Figure A41. 

Subroutine QRCALL is called from subrcutine EIGEN and hence calls sub- 
routine QR. QRCALL is a double iterative eigenvalue approximation 
method using a quotient reduction ache -e provided by QR. Subroutine 
QRCALL i.s listed . - Figure A42, and shbroutine QR is listed as Figure 
A43. 
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Calculate initial velocities 

Y(1) = HOOT *6(1, 1, 3) 

Y(2) = HDOT *B(1, 2, 3) 

Y(3) = HDOT *B(l ,  3, 3) 

Y(10) = HDOT *B(3, 1, 3) 

Yc11) = HDOT *6(3, 2, 3) 

VI121 = H W T  *B(3, 3, 3) 

\ 

Figure A32. Subroutine INVELO Flow Diagram 
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Figure A33. Subroutine INVELO Source Listing 

M A L  FUNCTION SEC f X )  
SEC = I.O/~COS(X)+~~DE-14~ 
RFTURY 
FND 

Figure A34. Function SEC Source Listing 
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Figure A35, Subroutine SRBIN Source Listing 

Figure A36. Subroutine TORAD Source Listing 
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Figure A37. Subroutine TODEG Source Listing 

Figure A38. Subroutine RANDU Source Listing 
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Figure A39. Subroutine DERIVE Source L.eting 



Figure A40. Subroutine EIGEN Source Listing 
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Figure A40. Subroutine EIGEN Source Listing 
(Concluded) 
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? O  

Y O  

'& =. 

Figure A41. Subroutine HESSEN Source Listing 



Figure A41. Subroutine HESSEN Source Listing 
(Concluded) 



Figure A42. Subroutine -CALL Source Li6thg 
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-/. 

77 

, 

7 7  

an 

Figure A42, Subroutine QRCALL Source Lirting 
(Cootinu&) 



Figure A42. Subroutine QRCALL Source Lieting 
(Concluded) 

171 



9 

r, 
7 

1 1  

Ye.  

D t  

lrn 

60 
90 

Figure A43, Subrou QR Source Lirting 
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r'igure A43. Subroutine QR Source Listing 
(Concluded) 

173 

"_ - ... . ,  , . . .  


